

1st CCAT Collaboration Meeting

07-Apr-2020

CCAT-prime Observatory

- What is it?
 - 6-m telescope design for wide-area surveys (large FoV)
 - located in high Atacama Desert of N. Chile (high trans., low ϵ)
 - Designed to address broad science questions
 - Expected first light late 2021/early 2022
- CCAT studies will range from
 - mapping of gas and dust in the Milky Way to
 - the formation of the first galaxies to
 - probing the CMB for information on new particle species, the formation of cluster of galaxies and as a lead in to CMB-S4
 - among others to be discussed here
- Links to CCAT publications: http://www.ccatobservatory.org/
 - See reports & publications under documents link
 - Astro2020 White paper on CCAT-prime with links to white papers on science themes/topics
 - Technical papers on telescope, instrumentation, etc.

Extragalactic Survey Areas

Survey fields overlaid on Planck dust map (1) Deep Subaru HSC+PSF spectroscopy (current) & COSMOS X-Ray-to-meter-wave multiwavelength survey; (2) deep Euclid grism spectroscopy (upcoming), HERA HI 21 cm (upcoming), & H-UDF/CDF-S multiwavelength surveys (incl. JWST GTO); (3) HERA HI 21 cm (upcoming), VLASS; (4) Planck, SDSS, DES, ACT (current), SO, DESI, LSST, eROSITA (upcoming).

The 6-m CCAT-prime telescope

CCAT-prime optical layout

07-Apr-2020

- See Niemack 2016, Parshley, 2018
- Ray trace shows sources -2, 0, and 2 degrees offaxis
- Locations of instrument spaces 1 and 2 are shown (IS-1, IS-2)

- Aperture: 6-m
- Large FoV: $\sim 7.3^{\circ} \cdot (\lambda/3 \text{ mm})^{1/2}$
- HWFE: $< 11 \mu m$
 - Half wave-front error
 - Redundant checks: laser metrology system and near-field holography
- Pointing Error: < 1.4"
- Low emissivity: < 2.8% (goal < 1%)
- Scan patterns: azimuthal
 - Typically azimuthal scans, but accelerations adequate for other patterns
- Scan speed: $> 0.33^{\circ} \text{ s}^{-1} \cdot (\lambda / 350 \, \mu\text{m})$
 - in azimuth, and half this value in elevation
- Stray light mitigations
 - Option to add baffles

Status

- Telescope under construction
- Site Preparation
 - Upgraded road nearly complete: 5-month hiatus then 1 month to finish
 - One month for site leveling after road complete
 - Foundation installation on track (Apr 2021)
- Instrumentation
 - CHAI: on schedule
 - Prime-CAM:
 - 1-tube Mod-Cam cryostat for first-light (270 GHz)
 - 7-tube Prime-Cam cryostat in fabrication

Telescope

Shutter

Mirrors M1 & M2

Elevation Housing

Yoke Structure

Personnel Access

Lift

Support Cone

Anchor Ring

- Above: Delivery to Vertex
- Left: Loading SOLAT anchor ring for shipment

7

Telescope Foundation

Vital Stats:

- 14m diameter x \sim 3m tall: 13 pre-cast pieces: 1 hub = 14t, 12 radials = 27t each
- ~ 70 cubic meters of in situ concrete to "glue" pre-cast pieces together and embed telescope anchor ring
- ~ 12 km of rebar total in the foundation (joints contain rebar)
- total mass ~ 500t, additional ~ 450t of backfill on top
- supports ~ 220t telescope, reacts against ~ 200t moving in AZ

TAO Foundation

Telescope Structure

Overhead Crane

EL Bearings

Yoke Arm B Access

Instr. Space 1

Instr. Space 2A/2B

Process Space

VA Servo Space

Electronics Space

VERTEX ANTENNENTECHNIK GmbH

A GENERAL DYNAMICS COMPANY

WRITTEN CONSENT OF VERTEX ANTENNENTECHNIK GmbH - Duisburg

Telescope Support Cone

Steel support cone in manufacture. Finished cone will be ~ 8 tons.

Wessel

Beginning of Yoke Traverse

Elevation Drive Bearing

CCAT elevation drive gear

Mirror Panel

- Left: Front side of CCAT-Prime 0.7-m mirror panel. The surface RMS is approximately 2 microns.
- Right: Back side of mirror panel showing light-weighted structure, the five mounting points for attachment to the carbon fiber backing structure, and recesses for the x-y adjustment (along horizontal line in center).

Instrumentation

Name	Primary Science	λ range	FoV	No. Pixels	1 st Light?
CHAI	GEco	200 – 700 um	17' x 8.5'	128 (256 goal)	yes
P-Cam	kSZ, GEvo	350 – 1300 um	3º diameter	5.9x10 ⁴	yes
P-Cam	IM/EOR	740 – 1300 um		2.0x10 ⁴	yes
CMB-S4	CMB	350 – 3100 um	7.8° diameter	1.5x10 ⁵	no

CCAT Location

CCAT Site

- The low precipitable water vapor (PWV) at the CCAT site offer advantages over the ALMA plateau (5500 vs. 5000 m).
- For an equivalent setup,
 Cerro Chajnantor is better at all wavelengths.

Road Improvements

Road Improvements

Road Improvements

Schedule

Acceptance Testing & Commissioning

- FDR / Post-FDR
 - Verification of ~150 requirements by design and analysis ongoing
- Factory acceptance testing (FAT, pre-assembly in Germany)
 - Verification of ~40 requirements by measurement
 - Functional tests (limits, stow pins, etc.)
- Site acceptance testing (SAT, final assembly on C. Chajnantor)
 - Verification of \sim 50 requirements by measurement
 - Functional tests redux
 - Closes out contract with Vertex
- Holography, Laser Metrology, and IR Pointing Camera are strongly desired for FAT and absolutely required for SAT
- Commissioning:
 - Post-SAT further telescope refinement & characterization
 - Occurs for each instrument (I&T + Commissioning)
 - Combine some early science with commissioning activities

2018 CCAT. All Rights Reserved. www.ccatobservatory.org

Scan Patterns

- Primary scan pattern for EoR IM, Cluster and CMB science is simply azimuthal:
 - − Turn around time is ~ 2.5 s so, scanning at ~ 1° to 3°/sec \Rightarrow >80% efficiency for scans > 10° to 30°
 - EoR IM FoV is ~ $16^{(\circ)2}$, so 4° scan (@ 1° /s) would be only 62% efficient.
- Telescope performance will permit more sophisticated scan patterns, but not required

