A flexible model of the microwave sky for CCAT-prime

first applications and how to use it

Speaker : Maude Charmetant^{1,2,3} Kaustuv Basu¹, Jens Erler^{1,2,3} & Frank Bertoldi¹

¹ Argelander-Institut für Astronomie (AlfA)
² International Max Planck Research School for Astronomy Astrophysics (IMPRS)
³Bonn-Cologne Graduate School of Physics and Astronomy (BCGS)

AlfA

Bonn-Cologne Graduate School of Physics and Astronomy

April 8, 2020

00	0000	00000	00
Context	Microwave sky model	Applications	Conclusion

Schedule

1 Context

2 Microwave sky model

3 Applications

- Bonn SZ Groups projects
- My Project
- On different experiments

4 Conclusion

Context	Microwave sky model	Applications	Conclusion
••			

Context

Context	Microwave sky model	Applications	Conclusion
00			

What is this microwave sky ?

A flexible model of the microwave sky

- A high resolution (native pixel size ≈ 0.86′) microwave sky model based on full-sky maps templates produced from dark matter only simulations.
- Developed by Jens Erler and Maude Charmetant.

Goals

- To realistically reproduce the major microwave sky components.
- To make it easy to use by everyone, like a "black box".

CCAT-p: Why is it interesting?

- Produce realistic maps of the microwave sky at the CCAT-p frequencies for map-based predictions.
- Each of the components of the microwave sky can be turned on or off, including the 1/f sky noise.

Context	Microwave sky model	Applications	Conclusion
	0000		

Microwave sky model

Context	Microwave sky model	Applications	Conclusion
	0000		

Simulations providing full-sky templates

CITA WebSky model

- Dark matter only peak-patch (Stein et al. 2020). The authors paint halos coming from the collapse of 12228³ Particles in a 15,4 Gpc box.
- https://mocks.cita.utoronto.ca/index.php/Large_Scale_ Structure_Mocks

Sehgal Simulations

- Dark matter only N-body simulations (Sehgal et al., 2010).
- https://lambda.gsfc.nasa.gov/simulation/tb_sim_ov.cfm

Simons Observtory (SO) Simulations

AlfA

- Based on the (Sehgal et al., 2010) simulations.
- tSZ and CIB were rescaled to match measurements from Planck Collaboration (2014d), (2016h)
- https://lambda.gsfc.nasa.gov/simulation/tb_sim_ov.cfm

С		ite	x	
0	0			

Components of the microwave sky

component	template	effective resolution	limitations
	diffus	e high-z backgroun	ds
CMB	SO, CITA, Sehgal,	$N_{\rm side} = 4096, 0.86'$	-
	or any C_{ℓ}		
CIB	SO, CITA, or Sehgal	$N_{\rm side} = 4096, 0.86'$	extrapolation for $v > 350 \text{GHz}$
			necessary for SO and Sehgal
	Ga	lactic foregrounds	
synchrotron	PySM, model 's1'	$N_{\rm side} = 512, 6.9'$	low spatial resolution
free-free	PySM, model 'f1'	$N_{\rm side} = 512, 6.9'$	low spatial resolution
thermal dust	PySM, model 'd1'	$N_{\rm side} = 512, 6.9'$	low spatial resolution
AME	PvSM, model 'a1'	$N_{\rm side} = 512, 6.9'$	low spatial resolution
		point sources	1
radio PS	SO & Sehgal	$N_{\rm side} = 4096, 0.86'$	complicated SED, only linear
	c		interp. for $30 < v < 350$ GHz
			not available for CITA
		galaxy clusters	
tSZ	SO, CITA, Sehgal	$N_{\rm side} = 4096, 0.86'$	no working halo catalogs
		side	no rel, corr, applicable
kSZ	SO, CITA, Sehgal	$N_{\rm side} = 4096, 0.86'$	no working halo catalogs
		Noise	88-
white noise	given sensitivities	arbitrary	_
atmosheric noise	Choi et al. (2019)	arbitrary	only at SO and CCAT-p freq.
interne noise	2000 20 40 (2019)		no tools to simulate characteristic
			"stripy" survey poise
			surpy survey noise

Figure: Table from Jens Erler. The Python SkyModel (PySM) from (Thorne et al. 2017)

Speaker : Maude Charmetant AlfA	Microwave sky and applications	April 8, 2020	7/15
---------------------------------	--------------------------------	---------------	------

Context	Microwave sky model	Applications	Conclusion
	0000		
How to use	the developed microwave	eskv?	

Code is fully available on Github :

https://github.com/MaudeCharmetant/CCATp_sky_model

```
2 ###
```

```
3 return(allsky_map)
```


Figure: Map containing all the components, generated from the SO templates at 143 GHz.

Context	Microwave sky model	Applications	Conclusion
		00000	

Applications

Context	Microwave sky model	Applications	Conclusion
		00000	
Bonn SZ Groups projects			
Diverse use	of the microwave sky mo	odel	

tSZ-kSZ correlation work by Maude Charmetant

All-sky maps to test component separation, via ILC and CILC methods.

CCAT-p forecasts by Jens Erler

Testing of cluster extraction and survey yields, via matched multi-filtering method.

ntSZ analysis by Vyoma Muralidhara

Realistic noise covariance for predicting individual cluster spectral fit.

Context	Microwave sky model	Applications	Conclusion
		00000	
My Project			

Cross-correlation of tSZ-kSZ

Cosmology : Why study tSZ-kSZ ?

- Could provide a new way to detect kSZ.
- tSZ-kSZ cross-correlation study probes the total amount of baryons in halos. The goal is to study if that could account for the missing baryons.

CCAT-p: Why study tSZ-kSZ?

- Due to its unique location, CCAT-prime will allow measurements of the SZ effect to unprecedented precision and a clean separation of tSZ and kSZ.
- Possibility to remove CIB biases from both.

Wiener filtering

Filter made to maximise the response of the signal compare to the noise.

$$W_l = rac{C_l^{KSZ}}{C_l^{Noise}}$$
 where $Noise = kSZ + CMB + WN$

Context	Microwave sky model	Applications	Conclusion
		00000	
On different experiments			

Simulating a Planck-like experiment

• We consider a noise of $N = 33\mu K$ -arcmin for Planck and a beam of 7'.

Figure: Using the template SO. Blue: target signal, Grey: 1σ credible interval.

AlfA

Context	Microwave sky model	Applications	Conclusion
		00000	
On different experiments			

Simulating a CCAT-p like experiment

• We consider a noise of $N = 7\mu K$ -arcmin for CCAT-prime and a beam of 1'.

Figure: Using the template SO. Blue: target signal, Grey: 1 o credible interval.

Context	Microwave sky model	Applications	Conclusion
			•0

Conclusion

Context	Microwave sky model	Applications	Conclusion
			00

Advantages of the microwave sky

- Can produce a map at any given frequency.
- Allows to choose which component to include between 30 and 860GHz.
- Allows to choose the final resolution of the map and its units.
- Possibility to include sky noise (smooth realizations).
- Can simulate any experiments, e.g. CCAT-prime, PICO, SPT-3G.

Conclusion

- Jens Erler and I created a microwave sky model available for all collaboration members that can be used for realistic map-based CCAT-prime predictions.
- Using this microwave sky model, we see that detection of the kSZ effect might be achieved, via tSZ cross-correlation, with a CCAT-p like experiment.