## Improving constraints on primordial B-modes by measuring high frequency polarisation

Eiichiro Komatsu (Max Planck Institute for Astrophysics), April 8, 2020

### The question to answer (But I don't have an answer yet)

- (SAT)?

#### • How much would CCAT-prime data at 225, 280, 350, 410 and 850 GHz help improve cleaning dust for Simons Observatory's Small Aperture Telescope

Why SO? Because the time scale is similar and we are working together

### Input data **CCAT-prime sensitivity**

| Broadband channels wide survey (15,000 deg <sup>2</sup> ; 4,000 hours) |            |            |                                             |                     |                     |                      |              |
|------------------------------------------------------------------------|------------|------------|---------------------------------------------|---------------------|---------------------|----------------------|--------------|
| ν                                                                      | $\Delta v$ | Resolution | NEI                                         | Sensitivity         | NET                 | $N_{\rm white}$      | $N_1$        |
| GHz                                                                    | GHz        | arcsec     | Jy sr <sup><math>-1</math></sup> $\sqrt{s}$ | $\mu$ K-arcmin      | $\mu K \sqrt{s}$    | $\mu K^2$            | $\mu$        |
| 220                                                                    | 56         | 57         | 3,700                                       | 15                  | 7.6                 | $1.8 \times 10^{-5}$ | 1.6×         |
| 280                                                                    | 60         | 45         | 6,100                                       | 27                  | 14                  | $6.4 \times 10^{-5}$ | $1.1 \times$ |
| 350                                                                    | 35         | 35         | 16,500                                      | 105                 | 54                  | $9.3 \times 10^{-4}$ | 2.7>         |
| 410                                                                    | 30         | 30         | 39,400                                      | 372                 | 192                 | $1.2 \times 10^{-2}$ | 1.7×         |
| 850                                                                    | 97         | 14         | $6.0 \times 10^{7}$ <sup>†</sup>            | $5.7 \times 10^{5}$ | $3.0 \times 10^{5}$ | $2.8 \times 10^{4}$  | 6.1>         |

- trade off (SO-SAT's survey is fsky=0.1)

#### • CCAT-prime sensitivity is taken from Table 1 of the JLT paper (Choi et al.)

Temperature sensitivity (uK arcmin) will be **multiplied by sqrt(2)** for polarisation sensitivity

• Will also try a 4 times deeper survey, i.e., fsky=0.4 -> 0.1 and N<sub>white</sub> -> N<sub>white</sub>/4, to see a



### Input data **CCAT-prime sensitivity**

| Broadband channels wide survey (15,000 deg <sup>2</sup> ; 4,000 hours) |            |            |                                             |                     |                     |                      |              |
|------------------------------------------------------------------------|------------|------------|---------------------------------------------|---------------------|---------------------|----------------------|--------------|
| ν                                                                      | $\Delta v$ | Resolution | NEI                                         | Sensitivity         | NET                 | $N_{\rm white}$      | $N_1$        |
| GHz                                                                    | GHz        | arcsec     | Jy sr <sup><math>-1</math></sup> $\sqrt{s}$ | $\mu$ K-arcmin      | $\mu K \sqrt{s}$    | $\mu K^2$            | $\mu$        |
| 220                                                                    | 56         | 57         | 3,700                                       | 15                  | 7.6                 | $1.8 \times 10^{-5}$ | 1.6×         |
| 280                                                                    | 60         | 45         | 6,100                                       | 27                  | 14                  | $6.4 \times 10^{-5}$ | $1.1 \times$ |
| 350                                                                    | 35         | 35         | 16,500                                      | 105                 | 54                  | $9.3 \times 10^{-4}$ | 2.7×         |
| 410                                                                    | 30         | 30         | 39,400                                      | 372                 | 192                 | $1.2 \times 10^{-2}$ | 1.7×         |
| 850                                                                    | 97         | 14         | $6.0 \times 10^{7}$ <sup>†</sup>            | $5.7 \times 10^{5}$ | $3.0 \times 10^{5}$ | $2.8 \times 10^{4}$  | 6.1×         |
|                                                                        |            |            |                                             |                     |                     |                      |              |

#### • CCAT-prime sensitivity is taken from Table 1 of the JLT paper (Choi et al.)

~1/4 of Planck HFI



### Input data **SO** sensitivity

 SO-SAT and LAT sensitivities are taken from "baseline" in Table 1 of the "Science Goals and Forecasts" paper (1808.07445v2)

Properties of the planned SO surveys<sup>a</sup>.

|             |          | SATs $(f_{\rm sky} = 0.1)$ |                         |          | LAT $(f_{\rm sky} = 0.4)$ |               |
|-------------|----------|----------------------------|-------------------------|----------|---------------------------|---------------|
| Freq. [GHz] | FWHM (') | Noise (baseline)           | Noise (goal)            | FWHM (') | Noise (baseline)          | Noise (g      |
|             |          | $[\mu \text{K-arcmin}]$    | $[\mu \text{K-arcmin}]$ |          | $[\mu \text{K-arcmin}]$   | $[\mu K-arcr$ |
| 27          | 91       | 35                         | 25                      | 7.4      | 71                        | 52            |
| 39          | 63       | 21                         | 17                      | 5.1      | 36                        | 27            |
| 93          | 30       | 2.6                        | 1.9                     | 2.2      | 8.0                       | 5.8           |
| 145         | 17       | 3.3                        | 2.1                     | 1.4      | 10                        | 6.3           |
| 225         | 11       | 6.3                        | 4.2                     | 1.0      | 22                        | 15            |
| 280         | 9        | 16                         | 10                      | 0.9      | 54                        | 37            |

#### Table 1



### Input data Model for noise power spectrum with 1/f

For CCAT-prime and SO-LAT, the noise power spectrum is given by

For SO-SAT, use information given in Table 2 of the forecast paper



### Input data Model for B-mode dust polarisation power spectrum

B-mode dust polarization power spectrum is given by  $\frac{\ell(\ell+1)C_{\ell}^{BB,d}}{2\pi} = A_{d,353} \left(\frac{\ell}{80}\right)^{\alpha_d} \left[\frac{g(q)}{g(q)}\right]$  $\alpha_d = -0.4, \quad \beta_d = 1.6, \quad T_d = 19.6 \text{ K}$  $g(\nu) = (e^x - 1)^2 / (x^2 e^x)$ , with a

fsky=0.4

$$\frac{\mu(\nu)}{(353)} \left(\frac{\nu}{353}\right)^{\beta_d+1} \frac{\exp(h \cdot 353/k_B T_d) - 1}{\exp(h\nu/k_B T_d) - 1}$$

 $A_{d,353} = 4.6 \ \mu \text{K}^2$  (In BICEP2 patch, BICEP2/Keck Array collab, 2018)

$$x = h\nu/(k_B T_{\rm CMB})$$

• Will also try 10x more dust power,  $A_d=46$  uK<sup>2</sup>, to be more representative of



### Input data **Power spectrum error**

• The power spectrum error is given by



CMB is ignored because it is small

# $\mathcal{Y}^{BB,d}_{\rho} + N_{\ell}/b_{\ell}^2)^2$ $(2\ell + 1)f_{\rm sky}$













## Estimating dust parameters (β<sub>d</sub>, T<sub>d</sub>)

- In principle we should calculate the expected uncertainty on the tensor-toscalar ratio, r.
  - This requires more work...

- As a start, let me calculate the expected uncertainties on the dust parameters and see how adding CCAT-prime improves the constraints
  - 1. Vary  $\beta_d$  only
  - 2. Vary  $T_d$  only
  - 3. Vary both  $\beta_d$  and  $T_d$

### Method

$$\chi^2(\beta_d, T_d) = \sum_{\nu} \sum_{i}^{N_{\text{pix}}} [m_i(\nu) - d_i(\nu, \beta_d, T_d)] (N^{-1})_{ij} [m_j(\nu) - d_j(\nu, \beta_d, T_d)] (N^{-1})_{ij} [m_j(\nu, \beta_d, T_d)] (N^{-1})_{$$

• Fisher matrix is



• Simple  $\chi^2$ , assuming uniform spectral parameters (which is fine because we want to see the relative improvement, rather than the absolute values)

$$\frac{\left(\frac{\nu}{353}\right)^{\beta_d+1}\frac{\exp(h\cdot 353/k_BT_d)-1}{\exp(h\nu/k_BT_d)-1}}{\frac{\partial\ln f_{\nu}}{\partial\theta_j}\sum_{\ell=2}^{\ell_{\max}}(2\ell+1)\frac{C_{\ell}^{BB,d}(\nu)b_{\ell}^2}{N_{\ell}(\nu)}$$



### Vary $\beta_d$ only (v >= 225 GHz) $I_{max}=100$

- SO-SAT only (f<sub>sky</sub>=0.1)
  - 225, 280 GHz
  - $Err(\beta_d) = 0.0222$
- CCAT-prime only (f<sub>sky</sub>=0.4)
  - 225, 280, 350, 410, 850 GHz
  - $Err(\beta_d) = 0.0579$
- SO-SAT 225, 280 GHz + CCAT-prime 350, 410, 850 GHz
  - $Err(\beta_d) = 0.0217$ ; thus, CCAT-prime adds very little

### Vary $T_d$ only ( $v \ge 225$ GHz) $I_{max}=100$

- SO-SAT only (f<sub>sky</sub>=0.1)
  - 225, 280 GHz
  - $Err(T_d) = 1.00 K$
- CCAT-prime only (f<sub>sky</sub>=0.4)
  - 225, 280, 350, 410, 850 GHz
  - $Err(T_d) = 1.74 \text{ K}$
- SO-SAT 225, 280 GHz + CCAT-prime 350, 410, 850 GHz

•  $Err(T_d) = 0.906 \text{ K}$ ; thus, CCAT-prime improves the temperature by 10%

### Vary $\beta_d$ and $T_d$ (v >= 225 GHz) $I_{max}=100$

- SO-SAT only (f<sub>sky</sub>=0.1)
  - 225, 280 GHz
  - $Err(\beta_d) = 0.595$ ,  $Err(T_d) = 26.8$  K
- CCAT-prime only (f<sub>sky</sub>=0.4)
  - 225, 280, 350, 410, 850 GHz
  - $Err(\beta_d) = 0.151$ ,  $Err(T_d) = 4.54$  K
- SO-SAT 225, 280 GHz + CCAT-prime 350, 410, 850 GHz
  - $Err(\beta_d) = 0.0913$ ,  $Err(T_d) = 3.81$  K; thus, adding CCAT-prime is crucial

### Importance of 850 GHz to break degeneracy $I_{max}=100$

- SO-SAT 225, 280 GHz + CCAT-prime 350, 410, 850 GHz
  - $Err(\beta_d) = 0.0913$ ,  $Err(T_d) = 3.81$  K

- Remove 350 GHz, keep 410 and 850 GHz
  - $Err(\beta_d) = 0.0914$ ,  $Err(T_d) = 3.81$  K
- Remove 410 GHz, keep 350 and 850 GHz
  - $Err(\beta_d) = 0.0915$ ,  $Err(T_d) = 3.82$  K
- Remove 850 GHz, keep 350 and 410 GHz
  - $Err(\beta_d) = 0.504$ ,  $Err(T_d) = 22.69$  K

 $\beta_d$ -T<sub>d</sub> degeneracy is broken by 850 GHz



# Going to larger Imax...













### Summary of results **Caveat: Uniform dust SED parameters!**

| Imax | CCAT-prime          | SO-SAT: 225, 280    | SO-SAT                  |
|------|---------------------|---------------------|-------------------------|
|      | 225, 280, 350, 410, | + CCAT-p: 350, 410, | + CCAT-prime with       |
|      | 850 GHz             | 850 GHz             | I <sub>knee</sub> = 350 |
| 100  | Err(βd) = 0.151     | 0.091               | 0.065                   |
|      | Err(Td) = 4.54K     | 3.81 K              | 2.48 K                  |
| 500  | Err(βd) = 0.073     | 0.047               | 0.036                   |
|      | Err(Td) = 2.20K     | 1.87 K              | 1.34 K                  |
| 1000 | Err(βd) = 0.058     | 0.039               | 0.032                   |
|      | Err(Td) = 1.74K     | 1.51 K              | 1.15 K                  |
| 5000 | Err(βd) = 0.043     | 0.032               | 0.029                   |
|      | Err(Td) = 1.27K     | 1.14 K              | 0.96 K                  |

• Perhaps, a better strategy for CCAT-p to help SO-SAT is not to clean SAT maps by CCAT-p maps on degree scales directly, but to gain knowledge of dust SED parameters (incl. spatial variations) and use them as priors



### Conclusion

- scales
- measurement of SO-SAT by measuring dust parameters better
- Next step: What does this mean for the tensor-to-scalar ratio (r)?
  - than the previous slide
  - In any case, we should repeat the SO analysis with CCAT-prime!

 Despite that we do not have HWP and the data are affected by 1/f, CCATprime should be able to measure the dust power spectrum on degree angular

CCAT-prime has a potential to improve the primordial B-mode polarisation

• SO is not using parametric foreground removal, so they do not have to measure dust parameters. So, impacts on r would probably be less drastic