

Team members: Laura Fissel, Susan Clark, Sarah Sadavoy (additional collaborators welcome)

Planck Int XXXV 2016

Session Outline

- Introduction: Laura Fissel
- Magnetic Fields Galactic and Diffuse ISM (Susan Clark):
 - What can we learn about the magnetic fields and turbulence in the diffuse ISM with the planned CCAT prime surveys
 - Suggested additional survey: Studying magnetic fields in extremely nearby galaxies.
- Multi-scale study of the role of magnetic fields in star formation (Laura Fissel):
 - Extending the planned CMB wide scale surveys to cover the Galactic Plane.
 - Additional Targeted deep surveys of magnetic fields.
- Discussion

Sensitivity Estimates

Source intensity based on Planck Cold Clump SEDs (Juvela et al. 2015)

Based on Choi et al Table 1														
freq		df	Res ['']	Beam area [deg2]	NEI	NEPI	NET	N detectors		I source	sig_p full resolutio		to	%p needed for 3 sigma detection after smoothig
					Jy/sr-1 sqrt(s)		mK sqrt(s)		dP Mjy/Str	Mjy/Sr				
	220	56	5 57	0.00028328	3700	7400	7.6		0.00732	0.4	1.8%	5.5%	60	5.2%
	280	60) 45	0.00017656	6100	12200	14		0.01530	1.4	1.1%	3.3%	60	2.5%
	350	35	5 35	0.00010681	16500	33000	54		0.05321	2	2.7%	8.0%	60	4.7%
	410	30	30	7.8472E-05	39400	78800	192		0.14825	4	3.7%	11.1%	60	5.6%
	850	97	7 14	1.709E-05	6.00E+07	120000000	3.00E+0		3.75501	150	2.5%	7.5%	60	1.8%

Assumes 1 hr spent mapping 1 deg^2

860 GHz is the most sensitive to dust

assumed $\sigma_P = 2 \sigma_{l'}$ where P = sqrt(Q^2+ U^2):

- •Half the KIDs measure horizontal, half vertical poln: factor of sqrt(2)
- •Half the array measures Q, half U: factor of sfqrt(2)

For polarization sensitivity equates to the maximum resolution to detect polarization.

BLAST-TNG/BLASTPol

Stratospheric balloon-borne polarimeters that fly >35km altitude (>99.5 of the atmosphere).

[Bap] q

BLASTPol

- similar NTE detectors to Herschel SPIRE
- flew in 2010, 2012 from Antarctica

BLAST-TNG

- mKIDs (NIST manufactured, ROACH2 readout)
- first flight January 2020
 - flight was only 16 hours due to a launch anomaly, so we likely won't achieve the polarization science we'd hoped

BLAST-TNG at the Columbia Scientific Balloon Facility July 2018

Comparing CCAT 860GHz and BLAST-TNG Poln Sensitivity Pre-flight estimates

 I_{min} : Total intensity the dust would need to have to get $\sigma_p = 0.5\%$. In molecular clouds $p_{mean} \sim 2\%$

Survey	Band Wlen microns	FWHM arcsec				Annual Land Control of	I_min [60"FWHM] M]y/Sr	Area deg^2	Time hr		Depth hrs/deg^2
EOR-CCATP	3	50	14	0.589	0.11314387	22.62877488	5.280047472		10	2400	240
SFH-CCATp	3	50	14	5	0.96047432	192.0948632	44.82213474		36	120	3.3333333
CMB-CCATp	3	50	14	15.8	3.03509884	607.0197676	141.6379458		12000	4000	0.33333333
BLAST-TNG	2	50	31			188.7	97.495		1	5	5
BLAST-TNG	3	50	41			113.4	77.49	0	1	5	5
BLAST-TNG	5	00	59			42.4	41.69333333	11	1	5	5

Preliminary
Conclusion: CCAT-p
polarization at 860
GHz would have
similar or slightly
better sensitivity
than BLAST-TNG!

Magnetic Fields and Galactic Science

- Understanding how magnetic fields affect star formation and energy transport in galaxies:
 - How are magnetic fields in the ISM and molecular clouds shaped?
 - How is energy in the magnetic field?
 - How strong are magnetic fields as a function of density molecular clouds?
 - Do magnetic fields affect the formation of dense substructures (filaments, cores, disks) in star forming regions?

"First Light Science"

Assume: 100-400 hours, using 1-2 modules including 270/350/860 GHz + EoR modules and CHAI

- Notional titles of paper(s)
 - The Connection between Molecular Cloud and Galactic Scale Magnetic Fields in the LMC (200 hours at reduced mapping speed)
 - A CCATprime Survey of Magnetic Fields in the Musca Filament (160 hours at reduced mapping speed)
- Observing Requirements:
 - Wavelength/frequency bands: Ideally 860 GHz
 - Sensitivity: LMC σ_p = 2.9 MJy/Sr, Musca σ_p = 0.84 MJy/Sr
 - Mapping area: LMC ~60deg², Musca 4deg²
 - Observational cadence: not important
 - Other requirements: maximal crosslinking (some observations near transit)

Baseline Science

Assume: ~4000 hours, 2 broadband modules + EoR-spec & CHAI

(science that can be done with already planned surveys)

- Notional titles of paper(s)
 - A comparison of magnetic field properties and cloud structure for ~100 molecular clouds.
 - CCATprime measurements of the magnetized turbulence power spectrum in the local ISM.
- Observing Requirements:
 - Wavelength/frequency bands: 860 GHz, though 350 GHz could also be useful
 - Sensitivity: Large Area dP = 9.6 MJy/Sr, Musca dP = 0.24 MJy/Sr
 - Mapping area Large Area 26,000deg², Deep 4deg²
 - Observational cadence: Not important
 - Other requirements

Full Science (Additional Requests)

Assume: ~4000 hours, up to Choi et al. Instrument or variations (e.g. more EoR modules), & CHAI

- Notional titles of paper(s)
 - A comparison of magnetic fields and turblence in the LMC and SMC (100 extra hours on the SMC)
 - Energy dissipation scale in the turbulent ISM (possible 100 hour deep field survey of an intermediate density CNM cloud)
 - CCAT Studies of the role of magnetic fields in setting star formation efficiency, supporting filaments against gravity, and regulating core collapse (surveys of 5 additional molecular cloud fields ~300 hours)
- Observing Requirements:
 - Wavelength/frequency bands: 860 GHz
 - Sensitivity: SMC σ_p = 2.9 MJy/Sr, Clouds, Diffuse field σ_p = 0.84 MJy/Sr
 - Mapping area LMC ~60deg², Clouds 4deg² each
 - Observational cadence

Products/Path to Science

- Path to science
 - Observing requirements:
 - 860 GHz band polarization observations of large area and deep surveys
 - Additional 860 GHz maps requested:
 - six 4 deg² maps of nearby molecular clouds (300-400 hours)
 - maps of the LMC and SMC (200 hours)
 - 1 extremely deep CNM field (100 hours)
 - Reduction plan and requirements (computing & such): We can mostly use the same polarization reduction pipeline as the CMB polarization observations (e.g. TOAST)
 - Model/simulations: Need synthetic observations of star formation simulations to compare with our observations.
 - Foreground removal: Not applicable
 - Data analysis schedule:
- Personnel needs/plans: TBD, though analysing and producing maps will probably require at least one postdoc, and there is enough science for many many PhD theses.